

Tetrahedron Letters 42 (2001) 5985-5987

TETRAHEDRON LETTERS

Diethyl zinc catalyzed diastereoselective addition of ketenes to (S)-(+)-3-hydroxytetrahydrofuran

Vishnu K. Tandon*

Department of Chemistry, Lucknow University, Lucknow-226007, India Received 23 April 2001; revised 5 June 2001; accepted 28 June 2001

Abstract—The reaction of (S)-(+)-3-hydroxytetrahydrofuran with phenyl methyl ketene in presence of *n*-BuLi and Et₂Zn results in the formation of the diastereomeric esters (SS+SR) with a high degree of diastereoselectivity (98:2). © 2001 Elsevier Science Ltd. All rights reserved.

We first demonstrated the synthesis^{1,2} of (S)-(+)-3hydroxytetrahydrofuran and its stereoselective reactions via chiral sulfonyl methyl isocyanides.³ It has been used in 1,4-chirality transfer cycloaddition reactions⁴ as well as in the asymmetric synthesis of (S)-(+)-atrolactic acid.⁵ Both the (R)-(-)- and (S)-(+)-enantiomers of 3-hydroxytetrahydrofuran have been used for the synthesis of potent HIV protease inhibitors.⁶

The catalytic asymmetric addition of an achiral alcohol to a chiral ketene in the presence of optically active bases is known to result in an efficient asymmetric synthesis of esters,⁷ whereas uncatalyzed addition of a chiral alcohol to a chiral ketene generally results in the formation of esters with low asymmetric induction.⁸

The reaction of ketenes 2^9 with chiral (S)-secondary alcohols 1 in the presence of base can result in the formation of a mixture of diastereomeric esters 3 (*RS*+*SS*) (Scheme 1).

The reaction of ketenes with (–)-menthol and (+)-borneol in the presence of various bases, resulting in low asymmetric induction, has been reported earlier.¹⁰ The reaction of ketenes 2 with (S)-(+)-3-hydroxytetrahydrofuran 4 with various bases has now been carried out resulting in the formation of 5 with diastereoselectivity in the range of 8–46%.¹¹

The reaction of ketenes 2 with (-)-menthol 1 (R^* , (-)menthyl) and (+)-borneol 1 (R^* , (+)-bornyl) in the presence of *n*-BuLi and Et₂Zn results in the formation of diastereomeric esters 3 (SS+RS) with asymmetric induction in the range of 30–57% (Table 1, Scheme 1). Significant improvement in asymmetric induction catalyzed by Et₂Zn was observed with (-)-menthol and (+)-borneol compared to the reaction carried out earlier with other bases.¹⁰

The reaction of (S)-(+)-3-hydroxytetrahydrofuran **4** with ketenes **2** in the presence of *n*-BuLi and Et₂Zn results in the formation of ester **5** (*SS*+*SR*) with high asymmetric induction, 80–96% d.e.¹² (Table 2, Scheme 2). The diastereomeric excess in **5** was determined by ¹H NMR and ¹³C NMR¹³ and was found to be the same. The extent of asymmetric induction in diastereomeric esters **5** was further confirmed by hydrolysis to the optically active acids **6**. Thus, esters **5**

Scheme 1.

0040-4039/01/\$ - see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)01164-9

^{*} Fax: +91-522-326665; e-mail: tandon_vk@yahoo.com

Table 1.

Entry	Reaction conditions	R*	\mathbb{R}^1	R ²	Ester 3			
					Yield (%)	$[\alpha]_{\rm D}^{22}$ (acetone $c = 1.5$)	d.e. (%) (SS>SR)	
1	<i>n</i> -BuLi Et ₂ Zn	CH3	Me Et Me Ph	Ph Ph Cl Br	82 78 83 73	-32.5 -28.4 -22.5 -28.3	62 60 48 45	
2	<i>n</i> -BuLi Et ₂ Zn	Me Me	Me Et Me Ph	Ph Ph Cl Br	62 59 71 63	+15.6 +12.3 +18.5 +13.4	58 49 52 48	

Table 2.

Entry	Reaction conditions	R*OH	\mathbb{R}^1	\mathbb{R}^2	Ester 6			Acid 7	
					Yield (%)	(SS: SR)	$[\alpha]^{22}_{ m D}$	e.e. (%)	$[\alpha]^{22}_{\mathrm{D}}$
1	n-BuLi–Et ₂ Zn	4	Me	Ph	78	98:2	+22.58	96	+69.2
2	n-BuLi–Et ₂ Zn	4	Et	Ph	72	94:6	+16.33	84	+77.6
3	<i>n</i> -BuLi–Et ₂ Zn	4	Br	Me	80	90:10	-9.35	80	-20.0

Scheme 2. Reagents and conditions: (a) n-BuLi/Et₂Zn; (b) HCl/THF, (R¹=Me, R²=Ph; (ii) R¹=Et, R²=Ph; (iii) R¹=Me, R²=Br.

 $(R^1 = CH_3, R^2 = Ph)$ on hydrolysis with conc. HCl in THF for 48 h at room temperature gave (*S*)-(+)-2-phenylpropanoic acid in 82% yield, e.e. 96% $[[\alpha]_D^{22} = +69.2 \ (c=1.4, CHCl_3)]$. The absolute configuration was assigned to the 2-phenylpropanoic acid by comparison with the specific rotation of (*S*)-(+)-enantiomer.¹⁴

The proton transfer at C2 in ketene 2 from 4 is the key and crucial step for induction of stereoselectivity. Reactions carried out in the presence of catalytic Et_2Zn lead to a high degree of diastereoselectivity, possibly due to chelation control with Zn.

Acknowledgements

The author wishes to thank RSIC facilities of CDRI, Lucknow, India and Dr. H. Junjappa for his helpful discussions.

References

- 1. Tandon, V. K.; VanLeusen, A. M.; Wynberg, H. J. Org. Chem. 1983, 48, 2767.
- (a) Brown, H. C.; Vara Prasad, J. V. N. J. Am. Chem. Soc. 1986, 108, 2049; (b) Brown, H. C.; Gupta, A. K.; Rangaishenvi, M. V.; Vara Prasad, J. V. N. Heterocycles 1989, 28, 283.
- Hundscheid, F. J. A.; Tandon, V. K.; Rouwette, H. F. M.; Van Leusen, A. M. *Tetrahedron* 1987, 43, 5073.
- Stanssens, D.; Keukeleire, D. D.; Vandewalle, M. Tetrahedron Lett. 1987, 28, 4197.
- 5. Tandon, V. K.; Agarwal, V.; Van Leusen, A. M. Indian J. Chem. **1994**, *33*, 200.
- Thompson, W. J.; Ghosh, A. K.; Holloway, M. K.; Lee, H. K.; Munson, P. M.; Schwering, J. E.; Wai, J.; Darke, P. L.; Jugay, J.; Emini, E. A.; Schleif, W. A.; Huff, J. R.; Anderson, P. S. J. Am. Chem. Soc. 1993, 115, 801.
- (a) Pracejus, H. *Tetrahedron Lett.* **1966**, 3809; (b) Pracejus, H. *Forsch. Chem. Forsch.* **1967**, *8*, 493.
- Morrison, J. D.; Mosher, H. S. Asymmetric Organic Reactions; Prentice Hall: Engelwood Cliffs, NY, 1971.
- 9. Ketenes were generated in situ from the corresponding acid chlorides and Et_3N . The pale yellow colored ketenes were used immediately for the addition reactions.
- 10. McKenzie, A.; Christie, E. W. J. Chem. Soc. 1934, 1070.
- 11. A solution of (S)-(+)-3-hydroxy tetrahydrofuran **4** (176 mg, 2 mmol) in anhydrous toluene was prepared at -90° C (5 mol) in dry toluene under a N₂ atmosphere. Ketene **2** (R¹=C₂H₅ and R²=Ph) prepared from 2-phenylbutyroyl chloride (364 mg, 2 equiv.) was added and stirred for 12 h at 0°C. Saturated brine solution (50 ml) was added and the reaction mixture extracted with ether (3×50 ml), dried (MgSO₄), concentrated (in vacuo) to yield **5** (d.e. 45%). The reaction was carried out in the presence of different bases: pyridine, KO'Bu, Dabco and

DBU. The d.e. ranges are from 8-46% with the maximum d.e. obtained with Dabco and the minimum with pyridine 8%.

- 12. Reaction conditions: A solution of 4 (88 mg, 1 mmol) in dry toluene (10 ml) at -78° C was treated with 1 ml of *n*-BuLi (2.48 M hexane solution, 1 equiv.) under a N₂ atmosphere. The solution was stirred for 15 min then methyl phenyl ketene 2 (i) (from 168 mg of *n*-propanonyl chloride, 1 equiv.) and 5.80 ml of Et₂Zn (1 M toluene solution, 2.2 equiv.) were added. The reaction was stirred at this temperature for 1 h and then for 12 h at 0°C. Saturated brine solution (25 ml) added and extracted with ether (3×25 ml), the ether extract dried (MgSO₄) and concentrated in vacuo to yield **5** as an oil which was purified by flash chromatography over Al₂O₃ (benzene).
- 13. The structures of all the compounds were confirmed by IR, ¹H and ¹³C NMR. For **5** (Table 2, entry 2) NMR data are as follows:
 ¹H (CDCl₃, 200 MHz, δ ppm): 0.89, 0.91 (3H, 2t, *J*=7.5 Hz, CH₃ (4)), 1.90 (4H, m, CH₂, (3,4')), 3.39, 3.41 (1H, 2t, *J*=7.5 Hz, CH (2)), 3.80 (4H, m, CH₂ (2', 5')), 5.25 (1H, m, CH (3')), 7.12, 7.15 (5H, 2s, Ph). Assignment of resonances. ¹³C, ¹H correlations for **5** (*SS+RS*): ¹³C (CDCl₃, 100 MHz, δ ppm): C₂=52.907, 52.969; C₃=26.166, 26.263, C₄=11.662, C'₂=72.567, 72.429, C'₃=74.528, 74.547, C'₄=32.179, 32.441, C'₅= 66.404, 66.434. The ratio of peaks at 3.39 and 3.41 for CH-2 in the ¹H NMR and at 52.907 and 52.969 for C₂ in ¹³C NMR was used to estimate the diastereomeric excess in **5**.
- 14. An optically pure sample of (S)-(+)-2-phenylpropanoic acid from Aldrich, Milwaukee, WI, USA, had [α]²⁰=+72 (c=1.6, CHCl₃); (S)-(+)-2-phenyl butyric acid had [α]¹⁹=+92 (c=0.9, toluene) and (S)-(-)-2-bromopropionic acid had [α]²⁰=-25 (neat).